PowerLawWithExponentialGaussian
- class pyirf.spectral.PowerLawWithExponentialGaussian(normalization, index, e_ref, f, mu, sigma)[source]
Bases:
PowerLaw
A power law with an additional Gaussian bump. Beware that the Gaussian is not normalized!
\[\Phi(E, \Phi_0, \gamma, f, \mu, \sigma, E_\text{ref}) = \Phi_0 \left( \frac{E}{E_\text{ref}} \right)^{\gamma} \cdot \left( 1 + f \cdot \left( \exp\left( \operatorname{Gauss}(\log_{10}(E / E_\text{ref}), \mu, \sigma) \right) - 1 \right) \right)\]Where \(\operatorname{Gauss}\) is the unnormalized Gaussian distribution:
\[\operatorname{Gauss}(x, \mu, \sigma) = \exp\left( -\frac{1}{2} \left(\frac{x - \mu}{\sigma}\right)^2 \right)\]- Attributes:
- normalization: astropy.units.Quantity[flux]
\(\Phi_0\),
- a: float
\(\alpha\)
- b: float
\(\beta\)
- e_ref: astropy.units.Quantity[energy]
\(E_\text{ref}\)
Methods Summary
__call__
(energy)Call self as a function.
Methods Documentation