plot_1d_excess
- lstchain.visualization.plot_dl2.plot_1d_excess(named_datasets, lima_significance, x_label, x_cut, ax=None, x_range_min=0, x_range_max=2, n_bins=100, opacity=0.2, color_map_name='Set1')
Plot one-dimensional distribution of signal and backgound events Color maps: https://matplotlib.org/gallery/color/colormap_reference.html
- Parameters:
- named_datasets: Array of datasets to plot in a following form: (<dataset label>, data, overall
- scale factor)
- lima_significance: Li&Ma significance of observation
- x_label: X-axis label
- x_cut: X cut value
- ax: `matplotlib.pyplot.axes` or None
- x_range_min: Bottom value of X
- x_range_max: Top value of X
- n_bins: Number of histogram bins along X axis
- opacity: Plot opaacity
- color_map_name: Matplotlib colormap name
- Returns:
- ax: matplotlib.pyplot.axes