lstmcpipe.plots package#
Submodules#
lstmcpipe.plots.images_debug module#
- lstmcpipe.plots.images_debug.get_cleaning_config(config_file=None)#
- lstmcpipe.plots.images_debug.get_hillas_container(row)#
- lstmcpipe.plots.images_debug.main(filename, config_file=None)#
lstmcpipe.plots.plot_irfs module#
- lstmcpipe.plots.plot_irfs.main()#
- lstmcpipe.plots.plot_irfs.plot_angular_resolution_from_file(filename, ax=None, **kwargs)#
- lstmcpipe.plots.plot_irfs.plot_background_rate_from_file(filename, ax=None, **kwargs)#
- lstmcpipe.plots.plot_irfs.plot_effective_area_from_file(file, all_cuts=False, ax=None, **kwargs)#
- lstmcpipe.plots.plot_irfs.plot_energy_bias_from_file(filename, ax=None, **kwargs)#
- lstmcpipe.plots.plot_irfs.plot_energy_dispersion_from_file(filename)#
- lstmcpipe.plots.plot_irfs.plot_energy_resolution_from_file(filename, ax=None, **kwargs)#
- lstmcpipe.plots.plot_irfs.plot_gh_cut_per_energy(filename, ax=None, **kwargs)#
- lstmcpipe.plots.plot_irfs.plot_magic_2014(ax=None, **kwargs)#
- lstmcpipe.plots.plot_irfs.plot_magic_bkg_rate(ax=None, **kwargs)#
- lstmcpipe.plots.plot_irfs.plot_psf_from_file(filename)#
- lstmcpipe.plots.plot_irfs.plot_sensitivity_from_file(irf_file, ax=None, **kwargs)#
- lstmcpipe.plots.plot_irfs.plot_sensitivity_from_table(sens_table, ax=None, **kwargs)#
- lstmcpipe.plots.plot_irfs.plot_sensitivity_ratio(sensitivity_tables, baseline_index=0, ax=None, labels=None, **kwargs)#
Plot the ratio of sensitivities as a function of the energy
- Parameters:
sensitivity_tables (list) – list of sensitivity tables
baseline_index (int) – index of the baseline to use in the list
ax (pyplot.axis)
labels (list) – list of labels to use
kwargs (kwargs for the plot)
- Returns:
ax
- Return type:
pyplot.axis
- lstmcpipe.plots.plot_irfs.plot_sensitivity_ratio_from_files(filelist, baseline_index=0, ax=None, **kwargs)#
Plot the ratio of sensitivities as a function of the energy
- Parameters:
sensitivity_tables (list) – list of sensitivity tables
baseline_index (int) – index of the baseline to use in the list
ax (pyplot.axis)
kwargs (kwargs for the plot)
- Returns:
ax
- Return type:
pyplot.axis
- lstmcpipe.plots.plot_irfs.plot_summary_from_file(filename, axes=None, **kwargs)#
- lstmcpipe.plots.plot_irfs.plot_theta_cut_from_file(filename, ax=None, **kwargs)#
- lstmcpipe.plots.plot_irfs.read_sensitivity_table(irf_file)#
lstmcpipe.plots.plot_models_importance module#
- lstmcpipe.plots.plot_models_importance.main()#
lstmcpipe.plots.pointings module#
- lstmcpipe.plots.pointings.plot_pointings(pointings, ax=None, projection='polar', add_grid3d=False, **kwargs)#
Produce a scatter plot of the pointings
- Parameters:
pointings (2D array of astropy.quantities or numpy array in rad)
ax (matplotlib.pyplot.Axis)
projection (str or None) – ‘3d’ | ‘aitoff’ | ‘hammer’ | ‘lambert’ | ‘mollweide’ | ‘polar’ | ‘rectilinear’
add_grid3d (bool) – add a 3D grid in case of projection=’3d’
kwargs (dict) – kwargs for matplotlib.pyplot.scatter
- Returns:
ax
- Return type:
matplotlib.pyplot.axis